
Covid-19 Data Analytics with
Kubernetes

Microservices Application with Kubernetes and OpenShift

Mo Haghighi

Table of contents

- 2/70 - None

Table of contents

Table of contents

- 3/70 - None

71. Covid-19 Data Analytic Microservices Application with Kubernetes and OpenShift

71.1 Watch the full series on YouTube!

92. Part 1: Cloud Native Development, Microservices and the Architecture of our Covid-19 Data Parser

92.1 Agenda

112.2 Prerequisites

122.3 Microservices

143. Part 2: Build your Microservice container with Docker

153.1 Agenda

163.2 Clone The Repositories

163.3 Package Spring Boot with Maven

163.4 What is Docker?

173.5 Technology vs. Toolkit

173.6 Docker Image vs. Docker Container

193.7 Building Docker Image from the Dockerfile

223.8 Summary

Table of contents

- 4/70 - None

234. Part 3: Deploy, Run and Maange your Docker Containers with Kubernetes

244.1 Agenda

244.2 Kubernetes

254.3 Quick reminder about Microservices architecture

254.4 Microservices and Kubernetes

264.5 Moving from Docker to Kubernetes

274.6 Understanding Deployment Scenario in Kubernetes

274.7 Kubernetes Concepts/Resources:

274.8 Deployment under the hood

284.9 Kubernetes Features:

294.10 Prerequisites:

294.11 What is minikube?

304.12 Useful commands through this section:

314.13 Useful Commands for Docker

314.14 Deploying an Application

324.15 Scaling Applications

334.16 Exposing an application

334.17 Different types of Services for exposing applications

34

4.18 Different types of ports for accessing application from within the cluster, from outside the node and form outside the cluster

344.19 Exposing application with type LoadBalancer

354.20 Rolling out updates

374.21 What is YAML?

374.22 Using YAML to create resources

404.23 Once YAML file is crafted, here is how to apply it:

404.24 Summary

Table of contents

- 5/70 - None

415. Part 4: Build, Deploy and Manage your Microservices Application with OpenShift

415.1 Agenda

425.2 What is OpenShift Container Platform?

435.3 3 x key features of OpenShift over Kubernetes. Automation, Agility and Security.

435.4 what are the automated workflows?

445.5 Three major differences between Kubernetes and OpenShift

465.6 Download and Install prerequisites

475.7 Login to IBM Cloud and check your installed plugins

485.8 Push Image to IBM Container Registry

485.9 OC commands

495.10 Some useful OC commands

495.11 Create Deployment using an image from IBM Cloud Container Registry

505.12 Expose the current deployment to the Internet

505.13 Pull Images from ICR into non-Default Projects

515.14 Verify that the new project can pull images from ICR

515.15 Scale and Replicas

525.16 Rolling out updates and Rolling back

545.17 Summary

556. Part 5: Build, Deploy and Share Your Applications with CodeReady Workspaces

566.1 Agenda

596.2 what is an operator?

596.3 What is the OperatorHub:

616.4 Install CodeReady Workspaces

666.5 Summary

677. Part 6: Build, and Test Your Applications with CodeReady Containers

677.1 Agenda

708. Part 7: Build your CI/CD pipelines with Jenkins and Tekton

708.1 Agenda

Table of contents

- 6/70 - None

1. Covid-19 Data Analytic Microservices Application with Kubernetes and
OpenShift

We have seen a range data published on the impact of various parameters on the spread of covid-19, including population density, average number of people per

household, ethnicity, weather data etc. Have you ever wanted to run your own analytics on covid-19 data, and examine data sets in order to draw a particular

conclusion? Or possibly evaluate a theory, that may or not may not be true. Such analytics could potentially shed light on the impacts of various factors, and you

can apply them to a variety of problems.

Maybe you'd like to see the impact of temperature and humidity on the spread of covid-19 in different countries?

This is a multipart workshop series on building, deploying and managing microservices applications with Kubernetes and openshift.

Our workshop series is around covid-19 data retrieval, parsing and analytic. This is a series of 7 x hands-on workshops, teaching you how to retrieve covid-19 data

from an authentic source, make them securely available through REST APIS on kubernetes and Openshift.

The primary applications are developed in Java Spring Boot, but we will add more features and apply analytical services on the data in the form of microservices

written in different programming languages.

1.1 Watch the full series on YouTube!

We highly recommend that you follow the workshops by watching the videos as they are hands-on and much more comprehensive than the instructions given here.

All videos are available from the links above or directly from this YouTube playlist

In this workshop series, we will firstly take a look at the key features of our application and how it was developed in microsevices architecture. We'll then explore

ways to contianerise our application with Docker. in Lab 3, We'll deploy and manage our application with Kubernetes. In Part 4, we'll deploy our application onto

Openshift on IBM Cloud using OpenShift CLI tool and Web Console. In Lab 6, we'll set up a CodeReady Workspace to share an instance of workspace with others

with ero configuration on the recipient side. In Lab 7, We'll build and test out application on a local version of Openshift Cluster, CodeReady containers. Finally,

in part 8 we'll automate our CI/CD pipeline to push our code into production with zero downtime.

40 Minutes 50 Minutes

80 Minutes 125 Minutes

1.Covid-19 Data Analytic Microservices Application with Kubernetes and OpenShift

- 7/70 - None

https://youtu.be/j1jLtp4_6Kg
https://youtu.be/j1jLtp4_6Kg
https://youtu.be/RMe2S30Cggc
https://youtu.be/RMe2S30Cggc
https://youtu.be/zU7ReT8tZfo
https://youtu.be/zU7ReT8tZfo
https://youtu.be/zU7ReT8tZfo
https://youtu.be/zU7ReT8tZfo
https://www.youtube.com/playlist?list=PLKBDkjUynCxj2DpjEAWfCsW88M473SWrg

As a reminder, all the steps taught in this course are generic and applicable to application developed in any programming languages or platforms. but to simplify

our journey and making it more use-case oriented, our course is designed around a covid-19 data analytic application.

At the beginning of every part, we take a quick look at our application. This is to showcase the end result of what we do together in every part with respect the

primary subject of each part.

Our application also comes with a frontend User Interface that connects to our parsers and invokes the API endpoints to display data and showcase the power of

microservices running as conainers on Kubernetes and Openshift.

This application has been designed as a template for designing your own analytical microservices and deploying onto Kubernetes.

This workshop series will be focused on:

Part 1: Cloud Native Development, Microservices and the Architecture of our Covid-19 Data Parser

Part 2: Build your Microservice container with Docker

Part 3: Deploy and manage your application with Kubernetes

Part 4: Deploy and manage your application with OpenShift on IBM Cloud Part 5: Build, Deploy and Share with CodeReady Workspaces

Part 6: Build and Test your application with CodeReady Containers

Part 7: Build your CI/CD pipelines with Jenkins and Tekton

Here is what you will learn by the end of this workshop series:

1.1Watch the full series on YouTube!

- 8/70 - None

https://github.com/mohaghighi/Covid19-UI.git

2. Part 1: Cloud Native Development, Microservices and the Architecture of
our Covid-19 Data Parser

2.1 Agenda

In this section you will learn:

2.Part 1: Cloud Native Development, Microservices and the Architecture of our Covid-19 Data Parser

- 9/70 - None

https://youtu.be/j1jLtp4_6Kg
https://youtu.be/j1jLtp4_6Kg
https://youtu.be/j1jLtp4_6Kg

An overview of Covid-19 data analytic web application

Quick summary

Data source & format

Data Parser

REST APIs endpoints

Microservices

Why microservices?

Orchestration with Kubernetes

Our application has been developed in Java and Spring Boot framework. It provides us with a number of API endpoints for retrieving covid-19 data per region,

country, dates and periods. It comes with a number of containerised microservices, including 2 x data parsers for positive cases and mortality rates per country,

and a User Interface for displaying data, as well as invoking those APIs through a number of sample functions.

As you can see from the slide, data is fetched from Johns Hopkins University's repo (which is an authentic source of covid-19), and is stored in our local data

repository.

Here is a list of sample API endpoints as we'll test them out shortly.

•

•

•

•

•

•

•

2.1Agenda

- 10/70 - None

2.2 Prerequisites

Spring Boot v2.2 - https://spring.io/guides/gs/spring-boot/

OpenJDK v11 - https://openjdk.java.net/install/

(Optional) Apache Netbeans IDE v12 - https://netbeans.apache.org/download/

Node.js v14 - https://nodejs.org/en/download/

Docker Latest - https://docs.docker.com/engine/install/

Minikube Latest - https://kubernetes.io/docs/tasks/tools/install-minikube/

CodeReady Containers - https://developers.redhat.com/products/codeready-containers

(Optional) OpenShift v4.3 on IBM Cloud - https://www.ibm.com/cloud/openshift

You also need a laptop with a modern operating system (Linux, MacOS or Windows) with at least 16GB memory

Note

2.2Prerequisites

- 11/70 - None

2.3 Microservices

By the end of this series, you'll have a microservices application with 4 x containers running in your Kubernetes/OpenShift cluster.

2.3Microservices

- 12/70 - None

Data Parser written in Java.

UI frontend written in Java to generate HTML and Node.js.

Analytical application wrtittn in Python Flask.

Data Visulization application written in Node.js

•

•

•

•

2.3Microservices

- 13/70 - None

3. Part 2: Build your Microservice container with Docker

Here's a quick look at what you're going to learn throughout this workshop series - and how Docker fits into our learning journey. In this lab you'll learn about

containers, the basics of containerising microservices with Docker, how to run and connect docker containers and best practices for building docker images based

on your application services' requirements.

In this lab, we'll containerise our application's microservices with Docker, and in the next lab, we'll deploy and manage them with Kubernetes. Later we'll use

openshift to automate the entire process of containerising, deployment, scaling and management with a few clicks from the openshift web console.

3.Part 2: Build your Microservice container with Docker

- 14/70 - None

https://youtu.be/RMe2S30Cggc
https://youtu.be/RMe2S30Cggc
https://youtu.be/RMe2S30Cggc

3.1 Agenda

In this section you will learn:

Install/download prerequisites

Package Java Maven application

Test Java application

Docker

Dockerfile

Build Docker image

Run Docker containers

Use Kubernetes Docker daemon

Docker Registry

SSH into Docker images

Connecting Docker containers

Inspect Docker Containers

In the previous labs, we broke down our application into several microservices based on their functionalities and purposes, and in this lab we'll containerise them

with Docker, and use docker to run them.

Therefore, we convert our monolithic application into a multi-container application.

If you want to review how this application has been designed and how microservices architecture optimised it, please refer to the previous workshop.

You may ask why Docker?

Well, Modern application development and app modernisation techniques consist of three important stages of Build, Deploy and Manage.

Docker plays a vital role in the build stage, and even partially the deployment phase.

As you can see from this slide, for stages we're going to follow in this workshop series, Docker is responsible for all initial steps.

•

•

•

•

•

•

•

•

•

•

•

•

3.1Agenda

- 15/70 - None

Let's start by clining the repos and packaging our Java application with Maven:

3.2 Clone The Repositories

3.3 Package Spring Boot with Maven

Run the jar file to test the Spring Boot application:

Data Parser runs on port 8082. if you want to change th Port Number, you need to edit "application.properties" file under src/main/java/resources/

Now we've ogot our application ready to be containerised with Docker. Before we dive deeper into Docker, let's explore what containers are and how docker fits

in containerisation technology.

3.3.1 What is a container?

Containers are executable units of software in which application code is packaged, along with its libraries and dependencies, in common ways so that they can

be run anywhere, whether it be on desktop, traditional IT, or the cloud.

3.4 What is Docker?

“Docker is the de facto standard to build and share containerized apps - from desktop, to the cloud”

You may ask why Docker?

Modern application development and app modernisation techniques consist of three important stages of Build, Deploy and Manage.

Docker plays a vital role in the build stage, and even partially the deployment phase.

As you can see from this slide, for stages we're going to follow in this workshop series, Docker is responsible for all initial steps.

git clone github.com/mohaghighi/covid19-web-application
git clone github.com/mohaghighi/covid19-UI

./mvnw clean install

java -jar target/[filename].jar

curl http://localhost:8082

3.2Clone The Repositories

- 16/70 - None

3.5 Technology vs. Toolkit

containers have been around for quite some time, and developers can create containers without Docker -- but Docker makes it easier, simpler, and safer to build,

deploy, and manage containers. Docker is essentially the first toolkit that due to its simplicity, enabled all developers to build, deploy, run, update, and stop

containers using simple commands and work-saving automation.

3.6 Docker Image vs. Docker Container

Docker container image is a lightweight, standalone, executable package of software that includes everything needed to run an application: code, runtime,

system tools, system libraries and settings. (only interacting with designated resources)

Container *images become containers at runtime* and in the case of Docker containers - images become containers when they run on Docker.

So let's get started and build our first container image with Docker.

The first step is to craft our dockerfile and the Dockerfile is essentially the build instructions to build the image.

3.5Technology vs. Toolkit

- 17/70 - None

3.6.1 What is a Dockerfile?

A set of build instructions to build the image in a file called "dockerfile".

3.6.2 Craft your Dockerfile

The first part is the FROM command, which tells docker what image to base this off of. The FROM instruction sets the Base Image for subsequent instructions.

It'll start by pulling an image from the Public Repositories.

ARG defines instructions to define variables. ENV is similar to ENV but mainly meant to provide default values for your future environment variables. ARG

values are not available after the image is built.

The COPY instruction copies new files or directories from <src> and adds them to the filesystem of the container at the path <dest>. It can copy a file (in the

same directory as the Dockerfile) to the container

The ADD instruction copies new files, directories or remote file URLs from <src> and adds them to the filesystem of the image at the path <dest>.

The ENV instruction sets the environment variable <key> to the value <value>.

3.6.1What is a Dockerfile?

- 18/70 - None

This is what runs within the container at build time. The RUN instruction will execute any commands in a new layer on top of the current image and commit the

results.

An ENTRYPOINT allows you to configure a container that will run as an executable.

[Entry Point/CMD] ENTRYPOINT instruction allows you to configure a container that will run as an executable. It looks similar to CMD, because it also allows

you to specify a command with parameters. The difference is ENTRYPOINT command and parameters are not ignored when Docker container runs with command

line parameters.

The EXPOSE instruction informs Docker that the container listens on the specified network ports at runtime. The EXPOSE instruction does not actually publish

the port. It functions as a type of documentation between the person who builds the image and the person who runs the container, about which ports are intended

to be published.

In the case of our Data Parser Spring Boot application:

Dockerfile for Node.js application:

Dockerfile for Python application:

save the file as dockerfile with no file extension.

3.7 Building Docker Image from the Dockerfile

in this case, let's call it myapp:v1

let's take a look at our docker images:

our image must be listed there.

now let's a look at running containers:

if you add -al, you can view all running and stopped containers

Here's the command for running the docker container

should add '&' to run in the background

Note

FROM adoptopenjdk/openjdk11:latest
ARG JAR_FILE=target/*.jar
COPY ${JAR_FILE} app.jar
ENTRYPOINT ["java","-jar","/app.jar"]

FROM node:12
COPY package*.json ./
RUN npm install
ENTRYPOINT [”node",”app.js"]

FROM python:3
COPY package.py ./
RUN pip install pystrich
ENTRYPOINT [”python",”./app.py"]

docker build -t [image name:v1] [path]

docker build -t myapp:v1 .

docker images

docker ps

docker ps -al

docker run -p [PortHost:PortContainer] [imageName] -d --rm

3.7Building Docker Image from the Dockerfile

- 19/70 - None

Now let's go ahead and run our container on port 8082:

-d and --rm flags will respectively run the docker in detached, mode and replace an existing docker image of the same name with the name one.

We can ping the application by invoking the /hello/ REST endpoint:

3.7.1 Build and Run the UI App

The UI application can be retrieved from here: https://github.com/mohaghighi/Covid19-UI.git

Now let's build the UI app and call it myui:v1 Dockerfile is the same as the one we used for Data Parser app but changing the name to "myui"

in case you haven't run the maven build and packaged the UI App, run this where mvnm file is located

Now let's run the UI app on port 8081:

Open your browser and navigate to

From the UI, click on connect on the top left hand corner and enter:

As you may have seen, you got an error indicating that the server is not responding. There reason is, we can connect to containers directly through Docker, but

docker containers cannot discover or communicate with each other.

now let's try to ssh into our one of the docker containers and try to connect to the other one to identify the problem. To simulate the issue that we've just

expereinced with the UI app, let's ssh into our UI and try to connect to our data parser from within that container.

docker run -p 8082:8082 myapp:v1 -d

curl localhost:8082/hello/

docker build -t myui:v1 .

./mvnm clean install

docker run -p 8082:8082 myapp:v1 -d

localhost:8081

http://localhost:8082

3.7.1Build and Run the UI App

- 20/70 - None

https://github.com/mohaghighi/Covid19-UI.git

Here how we ssh into UI app

Now let's connect from within the container and see if it works

As you can see that doesn't work either.

containers need to be connected to the same network in order to communicate with each other

You can inspect your container to investigate the matter by looking for the network within both containers.

As you can see our UI and Parser apps are not part of the same network.

Let's create a network and instruct our containers to connect to it

docker exec [container name/ID] -it

docker exec -it myui:v1 /bin/bash

curl localhost:8082/hello/

docker inspect [container name]

3.7.1Build and Run the UI App

- 21/70 - None

let's stop our docker containers:

Let's run our containers again, this time instructing them to join the new network we've just created

Run UI application on test network:

Run parser application on test network:

Let's inspect our containers again and get their IP addresses based on their new network

if we try to ping our applications again, they should work fine.

Go ahead and connect to the parser form the UI app to verify that.

In the next part we will be using minikube to spin up a single node kubernetes cluster. If we build all our images on your host docker machine, it'd be quite

difficult to transfer your images from your host into minikube.

one solution is to use minikube's docker daemon to build your docker images.

you need to set your environmental parameter to use miinkube docker. This command will let you do that:

This step is not needed here, is intended to let you know what we will use minikube's docker.

3.8 Summary

docker network create test

docker stop [container id]

docker run -p [PortHost:PortContainer] [imageName] --net=test

docker run -p 8081:8081 myui:v1 --net=test

docker run -p 8082:8082 myapp:v1 --net=test

docker inspect [container name/ID]

eval $(minikube docker-env)

3.8Summary

- 22/70 - None

4. Part 3: Deploy, Run and Maange your Docker Containers with Kubernetes

4.Part 3: Deploy, Run and Maange your Docker Containers with Kubernetes

- 23/70 - None

https://youtu.be/RMe2S30zU7ReT8tZfoCggc
https://youtu.be/RMe2S30zU7ReT8tZfoCggc
https://youtu.be/RMe2S30zU7ReT8tZfoCggc

4.1 Agenda

In this section you will learn:

Why Kubernetes

Kubernetes concepts/components

Deploy on Kubernetes

Minikube

Pulling image from registry

Create deployment

Expose deployment

Create services

Manage with Kubernetes

Replicasets

Rolling out updates

Autoscaling

4.2 Kubernetes

Kubernetes is Greek for helmsman or pilot, hence the helm in the Kubernetes logo.

Imagine a ship full of containers like in this photo, and the helmsman is to make sure the ship sails smoothly through the oceans, and despite all the tides and

waves, it makes it to the destination safely. the helmsman orders his crew to evenly distribute the containers around the ship in a way that, proper balance is

struck, no one side is abnormally heavier, containers won't fall off, and the ship sails smoothly throughout the journey.

Just like the helmsman, Kubernetes looks after a large number of containerised applications, by orchestrating them according to the load, and the available

underlying resources, making sure our system achieves minimum zero downtime and our applications are always up and running.

In the first and second labs we learned about the advantages and motivations for moving away from Monolithic applications and adopting microservices

architecture.

•

•

•

•

•

•

•

•

•

•

•

•

4.1Agenda

- 24/70 - None

4.3 Quick reminder about Microservices architecture

Microservices architecture addresses all of the liabilities that are inherent in monolithic applications. microservices architecture allows

Different parts of our application to evolve on different timelines,

They can be deployed separately,

You choose your technology stack for each Microservice as it best fits the purpose,

You can scale your services dynamically at runtime. Or let's say you can create individual instances of each individual service.

But the most obvious advantage here is, if any part of the application fails, the whole application will not necessarily become unavailable/unresponsive to the

customer, because they are not designed and operated as a single entity like in monolithic architecture.

4.4 Microservices and Kubernetes

In the previous labs, we broke down our application into several microservices and then containerised them with Docker and let docker run them. So we

converted our application into a multi-container application in order to remove that single point of failure. But here 's the problem: Docker is running on a single

host.

1.

2.

3.

4.

4.3Quick reminder about Microservices architecture

- 25/70 - None

4.5 Moving from Docker to Kubernetes

And here we discuss why we need a containers orchestration platform like Kubernetes when moving from development to production.

a multi-container application must run on a multi-host environment in order to eliminate that single point of failure. If one host went down our orchestration tool

can switch the load to another host.

We need to be able to create new instances of our individual microservices containers to scale accordingly.

When one or more of our services need to be updated, or let's say we are adding a new service to our mix, the orchestration platform must be able to

automatically schedule new deployments and create new instances of our containers with zero downtime.

Kubernetes scales and manages our containers according to the available underlying resources on the host. Docker has a good view of what's happening to our

containers, but not our host machine.

Last but not least, Kubernetes checks our container continually to make sure they're healthy, and in case of any failure, it'll take actions to reinstate our

deployment, create new instances or restore the services.

4.5Moving from Docker to Kubernetes

- 26/70 - None

4.6 Understanding Deployment Scenario in Kubernetes

Now let's take a look at a deployment scenario on a high level, how we are going to deploy our application onto Kubernetes.

We broke down our application, built docker containers, deploying each docker container will spin up a pod with its docker container in there. Based on our

deployment scenario, and the load, each pod gets replicated (and that way we're making new instances of the docker containers) -these pods are inside a worker,

which we are showing them for simplicity. so we first created a deployment, and then scale our deployment accordingly. Next step is to create a service, which

allows our applications communicate with each within the cluster and also exposes our application to the internet and external networks. If the service type is a

load balancer, Traffic coming to our application will be directed to the pods accordingly through the load-balancer service.

4.7 Kubernetes Concepts/Resources:

Pod:Group of one or more containers with shared storage/network and a specification for how to run the containers in a shared context.

Deployment:A set of multiple, identical Pods with no unique identities. It runs multiple replicas of your application, and automatically replaces any failed

instances.

Node:A virtual or a physical machine with multiple pods, where Master node automatically handles scheduling the pods across the Worker nodes in the cluster.

Service:An abstraction which defines a logical set of Pods and a policy by which to access them. Service enables external access to a set of Pods.

Label:Labels are key/value pairs that are attached to objects, such as pods.

Namespace:Logical isolation/partitioning of resources in kubernetes cluster.

Now that we know the key components, let's revisit our deployment scenario, this time in more details to see what's happening under the hood.

4.8 Deployment under the hood

Firstly, we'll use KUBECTL CLI tool to interact with Kubernetes cluster. The kubectl lets you control Kubernetes clusters and its resources.

Think of kubectl as your magic keyword to instruct Kubernetes from your terminal.

4.6Understanding Deployment Scenario in Kubernetes

- 27/70 - None

4.9 Kubernetes Features:

Automated rollouts and rollbacks

Automatic scaling and load balancing

Self-healing

Service discovery

Storage orchestration

Automated rolling out changes to a deployment and the ability to pause, resume and rollback to previous version if needed.

Automatic scaling and load balancing: When traffic to a container spikes, Kubernetes can employ load balancing and scaling to distribute it across the network to

maintain stability.

Self-healing: When a container fails, Kubernetes can restart or replace it automatically; it can also take down containers that don't meet your health-check

requirements.

Service discovery: Kubernetes can automatically expose a container to the internet or to other containers using a DNS name and IP address.

And finally, provisioning local or cloud storage for your containers as needed.

•

•

•

•

•

4.9Kubernetes Features:

- 28/70 - None

4.10 Prerequisites:

In this part we are going to use minikube to spin up a single-node kubernetes cluster locally.

Here's the link to minikube on your machine:

4.11 What is minikube?

4.11.1 Spin up a Kubernetes cluster

https://kubernetes.io/docs/tasks/tools/install-minikube/

minikube start

4.10Prerequisites:

- 29/70 - None

4.11.2 Start minikube by limiting the resources' utilization

4.11.3 Get cluster information

4.11.4 Get cluster configuration

4.12 Useful commands through this section:

4.12.1 Get the list of Pods

4.12.2 Get the list of Deployments

4.12.3 Pause minikube

4.12.4 Stop minikube

4.12.5 Starting Kubernetes dashbaord

4.12.6 set minikube docker daemon

minikube start --memory=8192 --cpus=3 --kubernetes-version=v1.17.4 --vm-driver=virtualbox

kubectl cluster-info

kubectl config view

kubectl get pods

kubectl get deployment

kubectl pause minikube

kubectl stop minikube

kubectl minikube dashboard

eval $(minikube docker-env)

4.11.2Start minikube by limiting the resources' utilization

- 30/70 - None

4.12.7 Verify you're using minikube's docker by looking up the images

4.13 Useful Commands for Docker

4.13.1 Getting the list of containers

4.13.2 Getting running docker containers

4.14 Deploying an Application

4.14.1 Creating deployment with an image

4.14.2 Getting details on deployment

4.14.3 Getting logs for deployment

docker get images

docker container List

docker ps

kubectl create deployment [label] --image= [Image Name]

kubectl describe deployment/[deployment]

kubectl get events

4.12.7Verify you're using minikube's docker by looking up the images

- 31/70 - None

4.15 Scaling Applications

4.15.1 creating instances of the application by setting the replicas

4.15.2 Creating replicas and the processes under the hood

4.15.3 Scale deployment and setting replicas

4.15.4 Enabling application to automatically scale

kubectl scale deployment [Deployment Name] --replicas=4

kubectl autoscale deployment [deployment] --min=1 --max=8 --cpu-percent=80

4.15Scaling Applications

- 32/70 - None

4.15.5 Getting Info on Horizontal Pod Autoscaler

4.16 Exposing an application

4.16.1 Getting list of services

4.16.2 Pinging the application

4.16.3 ssh into kubernetes cluster to ping the pod from within the cluster

4.16.4 Ping the container

4.17 Different types of Services for exposing applications

ClusterIP: This default type exposes the service on a cluster-internal IP. You can reach the service only from within the cluster.

NodePort: This type of service exposes the service on each node’s IP at a static port. A ClusterIP service is created automatically, and the NodePort service will

route to it. From outside the cluster, you can contact the NodePort service by using “<NodeIP>:<NodePort>”.

LoadBalancer: This service type exposes the service externally using the load balancer of your cloud provider. The external load balancer routes to your

NodePort and ClusterIP services, which are created automatically

kubectl get hpa

kubectl expose deployment [deployment Name] [--port=8082] --type=NodePort

kubectl get services

curl [Master IP]:[NodePort]/hello/

minikube ssh

curl [Pod IP]:[container port]/hello/

4.15.5Getting Info on Horizontal Pod Autoscaler

- 33/70 - None

4.18 Different types of ports for accessing application from within the cluster, from outside the
node and form outside the cluster

NodePort: This setting makes the service visible outside the Kubernetes cluster by the node’s IP address and the port number declared in this property. The

service also has to be of type NodePort (if this field isn’t specified, Kubernetes will allocate a node port automatically).

Port: Expose the service on the specified port internally within the cluster. That is, the service becomes visible on this port, and will send requests made to this

port to the pods selected by the service.

TargetPort: This is the port on the pod that the request gets sent to. Your application needs to be listening for network requests on this port for the service to

work.

4.19 Exposing application with type LoadBalancer

4.19.1 Getting the Cluster-IP for the Kubernetes Cluster

4.19.2 This command doesn't work as Minikube doesn't allocate the external IP address

4.19.3 Pinging the container using minikube cluster IP instead worker node IP and NodePort

4.19.4 Now let's try to access the pod from within the cluster

kubectl expose deployment [deployment Name] [--port=8082] --type=LoadBalancer

kubectl cluster-info

curl [LoadBalancer External IP]:[Node Port]/hello/

minikube is a single node cluster. therefore its IP address is the same node IP

Info

curl [kubernetes Cluster-IP]:[Node Port]/hello/

minikube ssh

4.18Different types of ports for accessing application from within the cluster, from outside the node and form outside the cluster

- 34/70 - None

4.19.5 Using the Load Balancer IP and container Port

4.20 Rolling out updates

Rolling updates allow Deployments' update to take place with zero downtime by incrementally updating Pods instances with new ones. Performing updates

without affecting application availability.

In this part we're going to update our image to the parser for covid-19 mortality data, which reflects the number of death in every country country and region.

Make sure you use the container name in the above command to update the image in it.

To get the container name, use:

curl [LoadBalancer Cluster IP(internal)]:[Port]/hello/

kubectl set image deployment/[deployment name] [container]=[new image]

kubectl get deployment -o wide

4.19.5Using the Load Balancer IP and container Port

- 35/70 - None

verify the deployment is updated by pinging the app

To rollback to the previous version use:

optional: You can add --to-revision=n in order to rollback to a specific version

checkout the rollout status

curl ip:port/hello/
curl ip:port/get/country/data/germany/

kubectl rollout undo deployment/[deployment Name]

kubectl rollout undo deployment/[deployment Name] --to-revision=2

kubectl rollout status deployment/[deployment Name]

4.20Rolling out updates

- 36/70 - None

4.21 What is YAML?

YAML is a human-readable, data serialization standard for specifying configuration-type information. YAML can be used for common use cases such as:

Configuration files

Inter-process messaging

Cross-language data sharing

Kubernetes resources are represented as objects and can be expressed in YAML or JSON format Examples:

Print deployment as Yaml

Print services as Yaml

4.22 Using YAML to create resources

•

•

•

•

kubectl get deployment –o yaml [json]

•

kubectl get services –o yaml

4.21What is YAML?

- 37/70 - None

4.22Using YAML to create resources

- 38/70 - None

4.22Using YAML to create resources

- 39/70 - None

4.23 Once YAML file is crafted, here is how to apply it:

4.23.1 Get logs of applying YAML file

4.24 Summary

kubectl apply -f [fileName].yaml

kubectl log –l app=[container name]

4.23Once YAML file is crafted, here is how to apply it:

- 40/70 - None

5. Part 4: Build, Deploy and Manage your Microservices Application with
OpenShift

5.1 Agenda

In this section you will learn: - Why OpenShift? - Kubernetes vs. OpenShift - Developer productivity - Deploy on OpenShift via CLI - Pushing image to registry -

Create deployment - Expose - Deploy on OpenShift via Console - OpenShift Console - Builder Images - S2I (Source to Image)

5.Part 4: Build, Deploy and Manage your Microservices Application with OpenShift

- 41/70 - None

https://youtu.be/ewj_jG4TgkE
https://youtu.be/ewj_jG4TgkE
https://youtu.be/ewj_jG4TgkE

5.2 What is OpenShift Container Platform?

OpenShift is built on top of Kubernetes, and brings along all the brilliant features of Kubernetes, but it bundles Kubernetes with all the Essential features that will

ultimately provide the best experience to both developers and Operation engineers.

But how does it achieve that?

Through a number of automated workflows, which are not available in Kubernetes.

Those automated workflows are the results of these components that are drawn in this diagram.

Kubernetes is wrapped around an enterprise-grade linux operating system (RHEL/CoreOS), Networking, monitoring, registry, and more importantly, authentication

and authorisation.

5.2What is OpenShift Container Platform?

- 42/70 - None

5.3 3 x key features of OpenShift over Kubernetes. Automation, Agility and Security.

5.4 what are the automated workflows?

As a developer you want to get started on coding as quickly as possible, rather than spending time learning about different platforms, tools and services,

and how to refactor your application based on them.

Pre-created quick start application templates to build your application, based on your favourite languages, frameworks, and databases, with one click.

As a developer you want to focus on coding and not worrying about what's going to happen in the background.

Deploying to OpenShift is as easy as clicking a button or entering a git push command, enabling continuous integration, managing builds, and allows you

to fully control the deployment lifecycle.

As a developer you want to build and test your application locally, without worrying about the openshift cluster your application will end up running in.

Develop container-based applications in the cloud or locally using the Red Hat CodeReady Containers to create a fully-functioning OpenShift instance on your

local machine. Then, deploy your work to any OpenShift cluster.

•

•

•

5.33 x key features of OpenShift over Kubernetes. Automation, Agility and Security.

- 43/70 - None

As this figure shows developers can focus on coding, and the rest of the process is taken care of by OpenShift's S2I or Source to Image. Building your image,

deploying, and as you will later in part 7, continues integration.

5.5 Three major differences between Kubernetes and OpenShift

5.5.1 CLI vs. Console

One of the most distinctive features of OpenShift is its amazing web console that allows to implements almost all tasks from a simple graphical interface. As you

saw in the previous lab, Kubernetes dashboard is only good for displaying the status of your resources. You can't deploy, control or manage your applications,

networking or any of those form Kubernetes dashboard. Obviously, managed Kubernetes on different cloud platforms, come with different set of functionalities as

add-ons. But with Openshift container platfomr, the offered functionalities through the openshift console are vast. You can build, deploy, expose, update, and

almost implement any task in two separate perspectives of developer and administrator. We'll go through that later in this lab.

5.5Three major differences between Kubernetes and OpenShift

- 44/70 - None

5.5.2 Project vs. Product

Kubernetes is an opensource project, where as Openshift is a product based on an open source project, which is Kubernetes Origin Distribution or OKD. [next]

Comparing Kubernetes with OpenShift is like that classical example of comparing an engine with a car. You can't do much with an engine, and you need to

assemble it with other components in order to get from A to B and become productive. What you get with OpenShift includes enterprise support, ecosystem

certification And most importantly, regular releases and security updates at every level of the container stack and throughout the application lifecycle. That is an

opinionated integration of features to simplify and secure your applications.

5.5.3 Cloud Platforms Offerings

Kubernetes offerings differ from one platform to another. Almost every major cloud provider offers a different flavour of Kubernetes. You get different sets of add-

ons, plug-in and set of instructions for connecting your application to your cloud resources, which in most cases are only applicable to that particular platform.

With openshift container platform, your experience and the way you interact with with the platform, let's say the openshift console, stays the same. Therefore,

building, deploying and managing applications with Openshift container platform is truly: build it once and deploy it anywhere.

5.5.2Project vs. Product

- 45/70 - None

In this lab we're going to use managed openshift on IBM Cloud. Before continuing, let's get started by provisions an OpenShift cluster on IBM Cloud.

Red Hat® OpenShift on IBM Cloud™ is a fully managed OpenShift service that leverages the enterprise scale and security of IBM Cloud, so you can focus on

growing applications, not scaling the master.

IBM has added unique security and productivity capabilities designed to eliminate substantial time spent on updating, scaling and provisioning.

Once you've signed up on IBM Cloud and sign into your account by visiting cloud.ibm.com, you need to navigate through ibm cloud dashboard and choose

OpenShift. Then go ahead and create your cluster. Once your cluster is provisioned and ready, it'll be listed in this table.

5.6 Download and Install prerequisites

Install IBM CLI tools

Download OC CLI based on local OS and OpenShift version

curl -sL https://ibm.biz/idt-installer | bash

https://mirror.openshift.com/pub/openshift-v4/clients/oc/

5.6Download and Install prerequisites

- 46/70 - None

Download kubectl

Set your environmental parameters for OC

Set your environmental parameters for kubectl

5.7 Login to IBM Cloud and check your installed plugins

Login to IBM Cloud

if using a federated account

List IBM Cloud plugins

List IBM Cloud Openshift clusters

Initialize OC CLI Client

Log your local Docker daemon into the IBM Cloud Container Registry

Test your OC CLI

Test your Container Registry

https://storage.googleapis.com/Kubernetesrelease/release/v1.17.7/bin/darwin/amd64/kubectl

mv /<filepath>/oc /usr/local/bin/oc

mv /<filepath>/kubectl/usr/local/bin/kubectl

ibmcloud login

ibmcloud login --sso

ibmcloud plugin list

ibmcloud oc cluster ls

ibmcloud oc init

ibmcloud cr login

ibmcloud oc

ibmcloud cr

5.7Login to IBM Cloud and check your installed plugins

- 47/70 - None

5.8 Push Image to IBM Container Registry

Create a new namespace in IBM Cloud Container Registry

Tag the image

Push the image to container registry

List images in IBM Cloud Container Registry

5.9 OC commands

The developer OC CLI allows interaction with the various objects that are managed by OpenShift Container Platform.

Here is the format of OC commands, almost identical with Kubectl

ibmcloud cr namespace-add [namespace]

docker tag [image name] us.icr.io/[namespace]/[image name]

docker push us.icr.io/[namespace]/[image name]

ibmcloud cr image-list

oc <action> <object_type> <object_name>

5.8Push Image to IBM Container Registry

- 48/70 - None

View existing projects

Switch to a project

Create a new project

5.10 Some useful OC commands

Get the full list of OC commands and parameters

In-depth look into the values to be set

Edit the desired object type

Updates one or more fields of an object (The changes is a JSON or YAML expression containing the new fields and the values)

5.11 Create Deployment using an image from IBM Cloud Container Registry

Create a deployment by instructing the OpenShift cluster to pull an image from ICR

Get the list of deployments (same as Kubectl)

Get the list of pods (same as Kubectl)

oc projects

oc project [project name]

oc new-project [name project]

oc --help

oc explain [resource]

oc edit <object_type>/<object_name>

oc patch <object_type> <object_name> -p <changes>

oc create deployment [dep name] --image=us.icr.io/covid-test/myapp:v1

oc get deployment

5.10Some useful OC commands

- 49/70 - None

5.12 Expose the current deployment to the Internet

Expose the deployment on container port 8082 with LoadBalancer service type

Get the list of services

Every OpenShift project has a Kubernetes service account that is named default. Within the project, you can add the image pull secret to this service account to

grant access for pods to pull images from your registry.

5.13 Pull Images from ICR into non-Default Projects

Create an IBM Cloud IAM service ID for your cluster that is used for the IAM policies and API key credentials in the image pull secret.

Create a custom IBM Cloud IAM policy for your cluster service ID that grants access to IBM Cloud Container Registry.

Create an API key for the service ID

Create an image pull secret to store the API key credentials in the cluster project

Store the registry credentials in a Kubernetes image pull secret and reference this secret from your configuration file.

Add the image pull secret to your default service account.

Create an IBM Cloud IAM service ID

Create a custom IBM Cloud IAM policy for your cluster service ID

Create an API key for the service ID

Create an image pull secret to store the API key & store the registry credentials in K8s image pull secret

oc get pods

oc expose deployment/mytestservice --port=8082 --type=LoadBalancer

 oc get services

•

•

•

•

•

•

ibmcloud iam service-id-create cluster-project-id --description "service ID for cluster-project"

ibmcloud iam service-policy-create iam-service-id --roles Manager --service-name container-registry

ibmcloud iam service-api-key-create [api-key-name] [service-policy-id] --description "API Key"

5.12Expose the current deployment to the Internet

- 50/70 - None

Get all secrets in project

Get secrets in 'default' serviceaccount in project []

Add the image pull secret to your default service account

Check the secrets again to verify the secret has been added the default serviceaccount.

Get secrets in 'default' serviceaccount in project []

5.14 Verify that the new project can pull images from ICR

Create a deployment by pulling an image from ICR into the new peoject

verify that image has been pulled and deployed successfully

Expose the deployment

Verify the service is up and running

5.15 Scale and Replicas

in this section we will create replicas of our deployed application. Openshift will considers the instructed number of instances as the desired state. If any pod fails

or destroyed, OpenShift will bring that back up to keep the number of instances intact in order to meet the load.

oc --namespace [project] create secret docker-registry [secret name] --docker-server=us.icr.io --docker-username=iamapikey --docker-password=[API-key] --docker-
email=[]

oc get secrets --namespace [project]

oc describe serviceaccount default -n [project]

oc patch -n <project_name> serviceaccount/default --type='json' -p='[{"op":"add","path":"/imagePullSecrets/-","value":{"name":"<image_pull_secret_name>"}}]'

oc describe serviceaccount default -n [project]

oc create deployment [new project] --image=us.icr.io/covid-test/myapp:v1

oc get deployment

oc expose deployment/mytestservice --port=8082 --type=LoadBalancer

oc get services

5.14Verify that the new project can pull images from ICR

- 51/70 - None

Sclae the application by creating 3 more instances

Get the replicas

Verify the number of running pods (reflecting the number of instances)

5.16 Rolling out updates and Rolling back

Rolling updates allow Deployments' update to take place with zero downtime by incrementally updating Pods instances with new ones. Performing updates

without affecting application availability.

oc scale --replicas=4 deployment/[deployed resource]

oc get rs

oc get pods –o wide

5.16Rolling out updates and Rolling back

- 52/70 - None

In this part we're going to update our image to the parser for covid-19 mortality data reflect the number of death in every country country and region.

Make sure you use the container name in the above command to update the image in it.

To get the container name, use:

verify the deployment is updated by pinging the app

To rollback to the previous version use:

optional: You can add --to-revision=n in order to rollback to a specific version

checkout the rollout status

oc set image deployment/[deployment name] [container]=[new image]

oc get deployment -o wide

curl ip:port/hello/
curl ip:port/get/country/data/germany/

oc rollout undo deployment/[deployment Name]

oc rollout undo deployment/[deployment Name] --to-revision=2

oc rollout status deployment/[deployment Name]

5.16Rolling out updates and Rolling back

- 53/70 - None

5.17 Summary

5.17Summary

- 54/70 - None

6. Part 5: Build, Deploy and Share Your Applications with CodeReady
Workspaces

In this lab we'll explore one of the most exciting features of OpenShift for developers. We'll explore how codeready workspaces helps teams build with speed,

Agility, security and most notably code: in production from anywhere. And by anywhere, it truly means anywhere as we'll find out shortly.

First We'll take a look at the key features of CodeReady Workspaces and we'll show you how to install code ready workspace in your OpenShift cluster. We'll

discuss Operators and the operatorhub. Then we'll dive into our workspace to create a sample application from the in-browser IDE, and share the workspace with

our team.

Here's a quick revision of what we've learnt together so far - and how that fits into our learning journey throughout this course. We containerised our application

with Docker, deployed and managed with Kubernetes and later with OpenShift CLI and Console. And now we're going to make it even easier to get started with

coding from a browser. If you haven't watched the previous workshops, I highly encourage you to go ahead and review them. You get a clear idea about

microservices, containerisation, orchestration, how openshift automates tedious tasks, and ultimately why codeready workspaces is such a fabulous solution for

developers.

6.Part 5: Build, Deploy and Share Your Applications with CodeReady Workspaces

- 55/70 - None

6.1 Agenda

In this section you will learn:

What is CodeReady workspaces?

Install CodeReady Workspaces

Operators in OpenShift

OperatorHub

Install CRW Operator

Create CheCluster

Your first workspace

Sample stacks

Import from Git

In-browser IDE

Compile/Run/Expose

Workspace admin

Share your Workspace

Developers often spend too much time configuring their development environment, adding their libraries, dependencies and so forth. It becomes even a bigger

problem when developers are collaborating on a project. Let's say you develop an application on your machine, and it runs perfectly. but when others try to run it,

all sorts of errors start showing up. And if you're working in a team, despite having kept your team well-aware of all the dependencies and libraries, collaborating

on a project becomes a nightmare.

You know that old saying : It works on my machine!!!

•

•

•

•

•

•

•

•

•

•

•

•

•

6.1Agenda

- 56/70 - None

CodeReady workspace offers a shared development environment for rapid cloud application development using Kubernetes and containers to provide a consistent

and pre-configured developers environment to your teams.

It is a cloud-native application environment that allows you to share an instance of your workspace, including all the libraries, dependencies and tools.

All you need to do is: add your libraries and dependencies, create a workspace instance and share that with your team members.

It is as easy as sharing a URL - called factory - with the rest of your team. clicking the URL will spin up a new workspace. This way your team will share the

same runtime and same development environment.

But that's not all.. CodeReady Workspaces includes a powerful in-browser IDE, with all the features of modern IDEs including version control system and even

keyboard shortcuts. You can also access it from any operating system, browser or IDE, including extension for VS code.

6.1Agenda

- 57/70 - None

Installing CodeReady Workspaces in your OpenShift cluster is as simple as looking up its dedicated operator and installing from the OperatorHub within the

OpenShift Console.

Now let's explore Operators and the OperatorHub:

6.1Agenda

- 58/70 - None

6.2 what is an operator?

updating and maintaining containerised applications should be an automated process. The same applies to your containerised development environment.

Operators are small programs in your cluster that monitor your applications continuously and make sure they are running according to your instructions. When an

operator detects a difference between the actual and the ideal states, it will act to correct it.

If you recall from workshop 3, we discussed how Kubernetes master node continuously reconciles the expressed desired state and the current state of an object.

And that is a controller in Kubernetes. Controller is a core concept in Kubernetes and is implemented as a software loop that runs continuously on the Kubernetes

master node.

An Operator is essentially a custom controller.

The Operator is a piece of software running in a Pod on the cluster, interacting with the Kubernetes API server.

6.3 What is the OperatorHub:

Operators are offered as pre-packaged modules from the operatorhub. OpenShift 4 introduced the OperatorHub, and that is a catalog of applications that can be

installed by the administrator and added to individual projects by developers.

6.2what is an operator?

- 59/70 - None

As we mentioned, Codeready workspaces is offered as a dedicated operator from the openshift Operatorhub.

Regardless of where you have your open shift cluster running, Codeready workspace runs as a pod inside your cluster.

Therefore workspaces are maintained and updated by an operator and you can rest assured that your development environment is always available and running

according to your requirement.

Underneath each workspace is a stack, a container image that includes language runtimes, compilers, tools, and utilities. Red Hat CodeReady Workspaces ships

with stacks for many different languages. Stacks can go beyond just language support, however. A stack can contain multiple containers, allowing you to code in

a replica of your production environment.

6.3What is the OperatorHub:

- 60/70 - None

6.4 Install CodeReady Workspaces

6.4Install CodeReady Workspaces

- 61/70 - None

6.4Install CodeReady Workspaces

- 62/70 - None

6.4Install CodeReady Workspaces

- 63/70 - None

6.4Install CodeReady Workspaces

- 64/70 - None

6.4Install CodeReady Workspaces

- 65/70 - None

6.5 Summary

6.5Summary

- 66/70 - None

7. Part 6: Build, and Test Your Applications with CodeReady Containers

CodeReady Containers brings a minimal, preconfigured OpenShift 4.x to your local laptop or desktop computer for development and testing purposes. CodeReady

Containers is delivered as a Red Hat Enterprise Linux virtual machine that supports native hypervisors for Linux, macOS, and Windows 10.

CodeReady Containers is the quickest way to get started building OpenShift clusters. It is designed to run on a local computer to simplify setup and testing, and

emulate the cloud development environment locally with all the tools needed to develop container-based apps.

7.1 Agenda

In this section you will learn:

What is CodeReady Containers?

Install & Setup

Start CodeReady Containers

Build on CodeReady Containers

From Git

From Templates

From Containers

From Dockerfile

Deploy with Source to Image from the console

View our resources from the CLI

Download CodeReady Containers (CRC) from this link after signing up for a Red Hat Developer account.

•

•

•

•

•

•

•

•

•

•

7.Part 6: Build, and Test Your Applications with CodeReady Containers

- 67/70 - None

Once CRC is downloaded, set it up by following these commands:

Then start your CRC:

You will be asked to enter your pull secret. Retrieve it form your Red Hat account:

Once CRC starts, you will be provided with dedicated URLs to log into your CRC webconsole as an admin or developer:

crc setup

crc start

7.1Agenda

- 68/70 - None

You will need the username and password in order to log into the web console.

If you want to carry on using the CLI tool, make sure you've set your environmental parameters to interact with CRC using OC commands:

some extra options to include in your CRC:

You can define your allocated resources by adding options to control the number of CPU cores, memory and the Hypervisor used by CRC

by default CRC loads this way

To stop CRC

eval $(crc oc-env)

crc start --cpus [cpu cores] --memory [mib] --vm-driver [vm]

crc start --cpus [4] --memory [8192] --vm-driver [hyperkit]

crc stop

7.1Agenda

- 69/70 - None

8. Part 7: Build your CI/CD pipelines with Jenkins and Tekton

8.1 Agenda

In this section you will learn:

Install/download prerequisites

Package Java Maven application

Test Java application

Docker

Dockerfile

Build Docker image

Run Docker containers

Use Kubernetes Docker daemon

Docker Registry

SSH into Docker images

Connecting Docker containers

Inspect Docker Containers

•

•

•

•

•

•

•

•

•

•

•

•

8.Part 7: Build your CI/CD pipelines with Jenkins and Tekton

- 70/70 - None

	Covid-19 Data Analytics with Kubernetes
	Microservices Application with Kubernetes and OpenShift

	Table of contents
	Table of contents
	1.Covid-19 Data Analytic Microservices Application with Kubernetes and OpenShift
	1.1Watch the full series on YouTube!

	2.Part 1: Cloud Native Development, Microservices and the Architecture of our Covid-19 Data Parser
	2.1Agenda
	2.2Prerequisites
	2.3Microservices

	3.Part 2: Build your Microservice container with Docker
	3.1Agenda
	3.2Clone The Repositories
	3.3Package Spring Boot with Maven
	3.3.1What is a container?

	3.4What is Docker?
	3.5Technology vs. Toolkit
	3.6Docker Image vs. Docker Container
	3.6.1What is a Dockerfile?
	3.6.2Craft your Dockerfile

	3.7Building Docker Image from the Dockerfile
	3.7.1Build and Run the UI App

	3.8Summary

	4.Part 3: Deploy, Run and Maange your Docker Containers with Kubernetes
	4.1Agenda
	4.2Kubernetes
	4.3Quick reminder about Microservices architecture
	4.4Microservices and Kubernetes
	4.5Moving from Docker to Kubernetes
	4.6Understanding Deployment Scenario in Kubernetes
	4.7Kubernetes Concepts/Resources:
	4.8Deployment under the hood
	4.9Kubernetes Features:
	4.10Prerequisites:
	4.11What is minikube?
	4.11.1Spin up a Kubernetes cluster
	4.11.2Start minikube by limiting the resources' utilization
	4.11.3Get cluster information
	4.11.4Get cluster configuration

	4.12Useful commands through this section:
	4.12.1Get the list of Pods
	4.12.2Get the list of Deployments
	4.12.3Pause minikube
	4.12.4Stop minikube
	4.12.5Starting Kubernetes dashbaord
	4.12.6set minikube docker daemon
	4.12.7Verify you're using minikube's docker by looking up the images

	4.13Useful Commands for Docker
	4.13.1Getting the list of containers
	4.13.2Getting running docker containers

	4.14Deploying an Application
	4.14.1Creating deployment with an image
	4.14.2Getting details on deployment
	4.14.3Getting logs for deployment

	4.15Scaling Applications
	4.15.1creating instances of the application by setting the replicas
	4.15.2Creating replicas and the processes under the hood
	4.15.3Scale deployment and setting replicas
	4.15.4Enabling application to automatically scale
	4.15.5Getting Info on Horizontal Pod Autoscaler

	4.16Exposing an application
	4.16.1Getting list of services
	4.16.2Pinging the application
	4.16.3ssh into kubernetes cluster to ping the pod from within the cluster
	4.16.4Ping the container

	4.17Different types of Services for exposing applications
	4.18Different types of ports for accessing application from within the cluster, from outside the node and form outside the cluster
	4.19Exposing application with type LoadBalancer
	4.19.1Getting the Cluster-IP for the Kubernetes Cluster
	4.19.2This command doesn't work as Minikube doesn't allocate the external IP address
	4.19.3Pinging the container using minikube cluster IP instead worker node IP and NodePort
	4.19.4Now let's try to access the pod from within the cluster
	4.19.5Using the Load Balancer IP and container Port

	4.20Rolling out updates
	4.21What is YAML?
	4.22Using YAML to create resources
	4.23Once YAML file is crafted, here is how to apply it:
	4.23.1Get logs of applying YAML file

	4.24Summary

	5.Part 4: Build, Deploy and Manage your Microservices Application with OpenShift
	5.1Agenda
	5.2What is OpenShift Container Platform?
	5.33 x key features of OpenShift over Kubernetes. Automation, Agility and Security.
	5.4what are the automated workflows?
	5.5Three major differences between Kubernetes and OpenShift
	5.5.1CLI vs. Console
	5.5.2Project vs. Product
	5.5.3Cloud Platforms Offerings

	5.6Download and Install prerequisites
	5.7Login to IBM Cloud and check your installed plugins
	5.8Push Image to IBM Container Registry
	5.9OC commands
	5.10Some useful OC commands
	5.11Create Deployment using an image from IBM Cloud Container Registry
	5.12Expose the current deployment to the Internet
	5.13Pull Images from ICR into non-Default Projects
	5.14Verify that the new project can pull images from ICR
	5.15Scale and Replicas
	5.16Rolling out updates and Rolling back
	5.17Summary

	6.Part 5: Build, Deploy and Share Your Applications with CodeReady Workspaces
	6.1Agenda
	6.2what is an operator?
	6.3What is the OperatorHub:
	6.4Install CodeReady Workspaces
	6.5Summary

	7.Part 6: Build, and Test Your Applications with CodeReady Containers
	7.1Agenda

	8.Part 7: Build your CI/CD pipelines with Jenkins and Tekton
	8.1Agenda

