Model Context Protocol (MCP)
Overview
The Model Context Protocol (MCP) is a standardized protocol that enables AI agents to interact with Large Language Models (LLMs) and other AI services in a consistent, efficient manner. MCP abstracts the complexities of different model providers and provides a unified interface for context management, model invocation, and response handling.
Purpose
MCP addresses several key challenges in AI agent development:
- Provider Abstraction: Work with multiple LLM providers through a single interface
- Context Management: Maintain conversation history and relevant context
- State Persistence: Preserve context across multiple interactions
- Resource Optimization: Efficient token usage and caching
- Error Handling: Standardized error responses and retry mechanisms
Architecture
graph TB
subgraph "Agent Layer"
A1[Agent 1]
A2[Agent 2]
A3[Agent 3]
end
subgraph "MCP Layer"
MCP[MCP Interface]
CM[Context Manager]
MM[Model Manager]
TM[Token Manager]
CACHE[Response Cache]
end
subgraph "Provider Layer"
P1[OpenAI]
P2[Anthropic]
P3[IBM Watson]
P4[Azure OpenAI]
P5[Custom Models]
end
subgraph "Storage"
DB[(Context Store)]
VCTR[(Vector Store)]
end
A1 --> MCP
A2 --> MCP
A3 --> MCP
MCP --> CM
MCP --> MM
MCP --> TM
MCP --> CACHE
CM --> DB
CM --> VCTR
MM --> P1
MM --> P2
MM --> P3
MM --> P4
MM --> P5
TM --> MM
CACHE --> MM
style MCP fill:#24a148
style CM fill:#24a148
style MM fill:#24a148
Core Components
1. MCP Interface
The main entry point for agents to interact with AI models:
from mcp import MCPClient
# Initialize MCP client
mcp = MCPClient(
provider='openai',
model='gpt-4',
api_key=os.getenv('OPENAI_API_KEY')
)
# Send a request
response = mcp.complete(
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What is the capital of France?"}
],
context_id='conversation-123',
temperature=0.7,
max_tokens=150
)
2. Context Manager
Manages conversation history and context:
# Create a new context
context = mcp.context.create(
context_id='conversation-123',
metadata={
'user_id': 'user-456',
'session_id': 'session-789'
}
)
# Add messages to context
mcp.context.add_message(
context_id='conversation-123',
role='user',
content='Tell me about AI agents'
)
# Retrieve context
history = mcp.context.get_history(
context_id='conversation-123',
limit=10
)
3. Model Manager
Handles model selection and invocation:
# List available models
models = mcp.models.list()
# Get model capabilities
capabilities = mcp.models.get_capabilities('gpt-4')
# Switch models dynamically
mcp.models.set_default('claude-3-opus')
4. Token Manager
Optimizes token usage and manages costs:
# Estimate tokens before sending
token_count = mcp.tokens.estimate(
messages=messages,
model='gpt-4'
)
# Get token usage statistics
usage = mcp.tokens.get_usage(
context_id='conversation-123',
period='last_24h'
)
Protocol Specification
Request Format
{
"version": "1.0",
"context_id": "conversation-123",
"model": "gpt-4",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is the capital of France?"
}
],
"parameters": {
"temperature": 0.7,
"max_tokens": 150,
"top_p": 1.0,
"frequency_penalty": 0.0,
"presence_penalty": 0.0
},
"metadata": {
"user_id": "user-456",
"timestamp": "2026-01-15T11:42:00Z"
}
}
Response Format
{
"version": "1.0",
"context_id": "conversation-123",
"request_id": "req-abc123",
"model": "gpt-4",
"response": {
"role": "assistant",
"content": "The capital of France is Paris."
},
"usage": {
"prompt_tokens": 25,
"completion_tokens": 8,
"total_tokens": 33
},
"metadata": {
"latency_ms": 1250,
"timestamp": "2026-01-15T11:42:01Z"
}
}
Error Format
{
"version": "1.0",
"context_id": "conversation-123",
"request_id": "req-abc123",
"error": {
"code": "RATE_LIMIT_EXCEEDED",
"message": "Rate limit exceeded. Please try again later.",
"retry_after": 60,
"details": {
"limit": 100,
"remaining": 0,
"reset_at": "2026-01-15T11:43:00Z"
}
}
}
Features
1. Multi-Provider Support
Switch between providers seamlessly:
# Use OpenAI
response = mcp.complete(
provider='openai',
model='gpt-4',
messages=messages
)
# Use Anthropic
response = mcp.complete(
provider='anthropic',
model='claude-3-opus',
messages=messages
)
# Use IBM Watson
response = mcp.complete(
provider='ibm-watson',
model='gpt-oss-120b',
messages=messages
)
2. Context Persistence
Maintain context across sessions:
# Save context
mcp.context.save(
context_id='conversation-123',
storage='persistent'
)
# Load context later
mcp.context.load(
context_id='conversation-123'
)
# Resume conversation
response = mcp.complete(
context_id='conversation-123',
messages=[{"role": "user", "content": "Continue our discussion"}]
)
3. Streaming Responses
Handle streaming for real-time responses:
# Stream response
for chunk in mcp.stream(
messages=messages,
context_id='conversation-123'
):
print(chunk.content, end='', flush=True)
4. Function Calling
Enable agents to call functions:
# Define functions
functions = [
{
"name": "get_weather",
"description": "Get current weather for a location",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string"},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}
},
"required": ["location"]
}
}
]
# Request with functions
response = mcp.complete(
messages=messages,
functions=functions,
context_id='conversation-123'
)
# Handle function call
if response.function_call:
result = execute_function(
response.function_call.name,
response.function_call.arguments
)
5. Embeddings
Generate embeddings for semantic search:
# Generate embeddings
embeddings = mcp.embeddings.create(
input="AI agents are autonomous software entities",
model="text-embedding-ada-002"
)
# Store in vector database
mcp.embeddings.store(
embeddings=embeddings,
metadata={"source": "documentation"},
collection="knowledge-base"
)
# Semantic search
results = mcp.embeddings.search(
query="What are AI agents?",
collection="knowledge-base",
limit=5
)
Best Practices
1. Context Management
- Keep context size manageable (< 8K tokens for most models)
- Implement context summarization for long conversations
- Clear old contexts regularly to save storage
2. Error Handling
from mcp.exceptions import RateLimitError, ModelError
try:
response = mcp.complete(messages=messages)
except RateLimitError as e:
# Wait and retry
time.sleep(e.retry_after)
response = mcp.complete(messages=messages)
except ModelError as e:
# Log error and use fallback
logger.error(f"Model error: {e}")
response = fallback_response()
3. Token Optimization
- Use appropriate max_tokens limits
- Implement response caching for repeated queries
- Monitor token usage and costs
4. Security
- Never log API keys or sensitive data
- Validate and sanitize user inputs
- Implement rate limiting per user/session
Integration with IBM Orchestrate
MCP integrates seamlessly with IBM Orchestrate:
from orchestrate import OrchestratePlatform
from mcp import MCPClient
# Initialize both
orchestrate = OrchestratePlatform(...)
mcp = MCPClient(...)
# Register MCP as a service
orchestrate.register_service(
name='mcp-service',
service=mcp,
health_check=mcp.health_check
)
# Use in workflows
workflow = orchestrate.create_workflow(
name='ai-conversation',
steps=[
{
'name': 'process-input',
'service': 'mcp-service',
'method': 'complete',
'input': '${user.message}'
}
]
)